Next: Footnotes Prev: Making and Preventing Breaks
The @deffn
command and the other definition commands enable you to describe functions, variables, macros, commands, user options, special forms and other such artifacts in a uniform format.
In the Info file, a definition causes the entity category¾`Function', `Variable', or whatever¾to appear at the beginning of the first line of the definition, followed by the entity's name and arguments. In the printed manual, the command causes TEX to print the entity's name and its arguments on the left margin and print the category next to the right margin. In both output formats, the body of the definition is indented. Also, the name of the entity is entered into the appropriate index: @deffn
enters the name into the index of functions, @defvr
enters it into the index of variables, and so on.
A manual need not and should not contain more than one definition for a given name. An appendix containing a summary should use @table
rather than the definition commands.
The @deffn
command is used for definitions of entities that resemble functions. To write a definition using the @deffn
command, write the @deffn
command at the beginning of a line and follow it on the same line by the category of the entity, the name of the entity itself, and its arguments (if any). Then write the body of the definition on succeeding lines. (You may embed examples in the body.) Finally, end the definition with an @end deffn
command written on a line of its own. (The other definition commands follow the same format.)
The template for a definition looks like this:
@deffn category name arguments... body-of-definition @end deffnFor example,
@deffn Command forward-word count This command moves point forward @var{count} words (or backward if @var{count} is negative). ... @end deffnproduces
Command forward-word count This function moves point forward count words (or backward if count is negative). ...Capitalize the category name like a title. If the name of the category contains spaces, as in the phrase `Interactive Command', write braces around it. For example:
@deffn {Interactive Command} isearch-forward ... @end deffnOtherwise, the second word will be mistaken for the name of the entity.
Some of the definition commands are more general than others. The @deffn
command, for example, is the general definition command for functions and the like¾for entities that may take arguments. When you use this command, you specify the category to which the entity belongs. The @deffn
command possesses three predefined, specialized variations, @defun
, @defmac
, and @defspec
, that specify the category for you: ``Function'', ``Macro'', and ``Special Form'' respectively. (In Lisp, a special form is an entity much like a function.) The @defvr
command also is accompanied by several predefined, specialized variations for describing particular kinds of variables.
The template for a specialized definition, such as @defun
, is similar to the template for a generalized definition, except that you do not need to specify the category:
@defun name arguments... body-of-definition @end defunThus,
@defun buffer-end flag This function returns @code{(point-min)} if @var{flag} is less than 1, @code{(point-max)} otherwise. ... @end defunproduces
buffer-end flag This function returnsSee Sample Function Definition, for a more detailed example of a function definition, including the use of(point-min)
if flag is less than 1,(point-max)
otherwise. ...
@example
inside the definition.
The other specialized commands work like @defun
.
Optional and Repeated Arguments
Some entities take optional or repeated arguments, which may be specified by a distinctive glyph that uses square brackets and ellipses. For
An argument enclosed within square brackets is optional. Thus, [optional-arg] means that optional-arg is optional. An argument followed by an ellipsis is optional and may be repeated more than once.
Thus, repeated-args... stands for zero or more arguments. Parentheses are used when several arguments are grouped into additional levels of list structure in Lisp.
Here is the @defspec
line of an example of an imaginary special form:
foobar (var [from to [inc]]) body...In this example, the arguments from and to are optional, but must both be present or both absent. If they are present, inc may optionally be specified as well. These arguments are grouped with the argument var into a list, to distinguish them from body, which includes all remaining elements of the form.
In a Texinfo source file, this @defspec
line is written like this (except it would not be split over two lines, as it is in this example).
@defspec foobar (@var{var} [@var{from} @var{to} [@var{inc}]]) @var{body}@dots{}The function is listed in the Command and Variable Index under `foobar'.
To create two or more `first' or header lines for a definition, follow the first @deffn
line by a line beginning with @deffnx
. The @deffnx
command works exactly like @deffn
except that it does not generate extra vertical white space between it and the preceding line.
For example,
@deffn {Interactive Command} isearch-forward @deffnx {Interactive Command} isearch-backward These two search commands are similar except ... @end deffnproduces
{Interactive Command} isearch-forward {Interactive Command} isearch-backward These two search commands are similar except ...
Each of the other definition commands has an `x' form: @defunx
, @defvrx
, @deftypefunx
, etc.
The `x' forms work just like @itemx
; see @itemx
.
The Definition Commands
Texinfo provides more than a dozen definition commands, all of which are described in this section.
The definition commands automatically enter the name of the entity in the appropriate index: for example, @deffn
, @defun
, and @defmac
enter function names in the index of functions; @defvr
and @defvar
enter variable names in the index of variables.
Although the examples that follow mostly illustrate Lisp, the commands can be used for other programming languages.
@deffn category name arguments...
@deffn
command is the general definition command for functions, interactive commands, and similar entities that may take arguments. You must choose a term to describe the category of entity being defined; for example, ``Function'' could be used if the entity is a function. The @deffn
command is written at the beginning of a line and is followed on the same line by the category of entity being described, the name of this particular entity, and its arguments, if any. Terminate the definition with @end deffn
on a line of its own.
For example, here is a definition:
@deffn Command forward-char nchars Move point forward @var{nchars} characters. @end deffnThis shows a rather terse definition for a ``command'' named
forward-char
with one argument, nchars.
@deffn
prints argument names such as nchars in italics or upper case, as if @var
had been used, because we think of these names as metasyntactic variables¾they stand for the actual argument values. Within the text of the description, write an argument name explicitly with @var
to refer to the value of the argument. In the example above, we used `@var{nchars}' in this way.
The template for @deffn
is:
@deffn category name arguments... body-of-definition @end deffn
@defun name arguments...
@defun
command is the definition command for functions. @defun
is equivalent to `@deffn Function ...'.For example,
@defun set symbol new-value Change the value of the symbol @var{symbol} to @var{new-value}. @end defunshows a rather terse definition for a function
set
whose arguments are symbol and new-value. The argument names on the @defun
line automatically appear in italics or upper case as if they were enclosed in @var
. Terminate the definition with @end defun
on a line of its own.
The template is:
@defun function-name arguments... body-of-definition @end defun
@defun
creates an entry in the index of functions.
@defvr category name
@defvr
command is a general definition command for something like a variable¾an entity that records a value. You must choose a term to describe the category of entity being defined; for example, ``Variable'' could be used if the entity is a variable. Write the @defvr
command at the beginning of a line and followed it on the same line by the category of the entity and the name of the entity.
Capitalize the category name like a title. If the name of the category contains spaces, as in the name ``User Option'', enclose it in braces. Otherwise, the second word will be mistaken for the name of the entity. For example,
@defvr {User Option} fill-column This buffer-local variable specifies the maximum width of filled lines. ... @end defvrTerminate the definition with
@end defvr
on a line of its own.
The template is:
@defvr category name body-of-definition @end defvr
@defvr
creates an entry in the index of variables for name.
For example:
@defvar kill-ring ... @end defvarThe template is:
@defvar name body-of-definition @end defvar
@defvar
creates an entry in the index of variables for name.
@defopt name
@defopt
command is the definition command for user options, i.e., variables intended for users to change according to taste; Emacs has many such (See emacs:Variables). @defopt
is equivalent to `@defvr {User Option} ...' and works like @defvar
.
Functions in Typed Languages
The @deftypefn
command and its variations are for describing functions in languages in which you must declare types of variables and functions, such as C and C++.
@deftypefn category data-type name arguments...
@deftypefn
command is the general definition command for functions and similar entities that may take arguments and that are typed. The @deftypefn
command is written at the beginning of a line and is followed on the same line by the category of entity being described, the type of the returned value, the name of this particular entity, and its arguments, if any.For example,
@deftypefn {Library Function} int foobar (int @var{foo}, float @var{bar}) ... @end deftypefn(where the text before the ``...'', shown above as two lines, would actually be a single line in a real Texinfo file) produces the following in Info:
-- Library Function: int foobar (int FOO, float BAR) ...
This means that foobar
is a ``library function'' that returns an int
, and its arguments are foo (an int
) and bar (a float
).
The argument names that you write in @deftypefn
are not subject to an implicit @var
¾since the actual names of the arguments in @deftypefn
are typically scattered among data type names and keywords, Texinfo cannot find them without help. Instead, you must write @var
explicitly around the argument names. In the example above, the argument names are `foo' and `bar'.
The template for @deftypefn
is:
@deftypefn category data-type name arguments ... body-of-description @end deftypefnNote that if the category or data type is more than one word then it must be enclosed in braces to make it a single argument.
If you are describing a procedure in a language that has packages, such as Ada, you might consider using @deftypefn
in a manner somewhat contrary to the convention described in the preceding paragraphs.For example:
@deftypefn stacks private push (@var{s}:in out stack; @var{n}:in integer) ... @end deftypefn(The
@deftypefn
arguments are shown split into three lines, but would be a single line in a real Texinfo file.)
In this instance, the procedure is classified as belonging to the package stacks
rather than classified as a `procedure' and its data type is described as private
. (The name of the procedure is push
, and its arguments are s and n.)
@deftypefn
creates an entry in the index of functions for name.
@deftypefun data-type name arguments...
@deftypefun
command is the specialized definition command for functions in typed languages. The command is equivalent to `@deftypefn Function ...'.Thus,
@deftypefun int foobar (int @var{foo}, float @var{bar}) ... @end deftypefunproduces the following in Info:
-- Function: int foobar (int FOO, float BAR) ...
The template is:
@deftypefun type name arguments... body-of-description @end deftypefun
@deftypefun
creates an entry in the index of functions for name.
@deftypemethod class data-type method-name arguments...
@deftypemethod
command is the definition command for methods in object-oriented typed languages, such as C++ and Java. It is similar to the @deftypefn
with the addition of the class parameter to specify the class containing the method.
Variables in Typed Languages
Variables in typed languages are handled in a manner similar to functions in typed languages. See Typed Functions. The general definition command @deftypevr
corresponds to @deftypefn
and the specialized definition command @deftypevar
corresponds to @deftypefun
.
@deftypevr category data-type name
@deftypevr
command is the general definition command for something like a variable in a typed language¾an entity that records a value. You must choose a term to describe the category of the entity being defined; for example, ``Variable'' could be used if the entity is a variable.
The @deftypevr
command is written at the beginning of a line and is followed on the same line by the category of the entity being described, the data type, and the name of this particular entity.For example:
@deftypevr {Global Flag} int enable ... @end deftypevrproduces the following in Info:
-- Global Flag: int enable ...
The template is:
@deftypevr category data-type name body-of-description @end deftypevr
@deftypevr
creates an entry in the index of variables for name.
@deftypevar int fubar ... @end deftypevarproduces the following in Info:
-- Variable: int fubar ...The template is:
@deftypevar data-type name body-of-description @end deftypevar
@deftypevar
creates an entry in the index of variables for name.
In a definition, if the name of a class is truly a name defined in the programming system for a class, then you should write an @code
around it. Otherwise, it is printed in the usual text font.
@defcv category class name
@defcv
command is the general definition command for variables associated with classes in object-oriented programming. The @defcv
command is followed by three arguments: the category of thing being defined, the class to which it belongs, and its name. Thus,
@defcv {Class Option} Window border-pattern ... @end defcvillustrates how you would write the first line of a definition of the
border-pattern
class option of the class Window
.
The template is
@defcv category class name ... @end defcv
@defcv
creates an entry in the index of variables.
The template is:
@defivar class instance-variable-name body-of-definition @end defivar
@defivar
creates an entry in the index of variables.
For example, some systems have constructs called wrappers that are associated with classes as methods are, but that act more like macros than like functions. You could use @defop Wrapper
to describe one of these.
Sometimes it is useful to distinguish methods and operations. You can think of an operation as the specification for a method. Thus, a window system might specify that all window classes have a method named expose
; we would say that this window system defines an expose
operation on windows in general. Typically, the operation has a name and also specifies the pattern of arguments; all methods that implement the operation must accept the same arguments, since applications that use the operation do so without knowing which method will implement it.
Often it makes more sense to document operations than methods. For example, window application developers need to know about the expose
operation, but need not be concerned with whether a given class of windows has its own method to implement this operation. To describe this operation, you would write:
@defop Operation windows exposeThe
@defop
command is written at the beginning of a line and is followed on the same line by the overall name of the category of operation, the name of the class of the operation, the name of the operation, and its arguments, if any.The template is:
@defop category class name arguments... body-of-definition @end defop
@defop
creates an entry, such as `expose
on windows
', in the index of functions.
@defmethod class name arguments...
@defmethod
command is the definition command for methods in object-oriented programming. A method is a kind of function that implements an operation for a particular class of objects and its subclasses. In the Lisp Machine, methods actually were functions, but they were usually defined with defmethod
.
@defmethod
is equivalent to `@defop Method ...'. The command is written at the beginning of a line and is followed by the name of the class of the method, the name of the method, and its arguments, if any.For example,
@defmethod bar-class
bar-method argument
...
@end defmethod
illustrates the definition for a method called bar-method
of the class bar-class
. The method takes an argument.
The template is:
@defmethod class method-name arguments... body-of-definition @end defmethod
@defmethod
creates an entry, such as `bar-method
on bar-class
', in the index of functions.
@deftypemethod class data-type name arguments...
@deftypemethod
command is the definition command for methods in object-oriented typed languages, such as C++ and Java. It is similar to the @defmethod
command with the addition of the data-type parameter to specify the return type of the method.
Data Types
Here is the command for data types:
@deftp category name attributes...
@deftp
command is the generic definition command for data types. The command is written at the beginning of a line and is followed on the same line by the category, by the name of the type (which is a word like int
or float
), and then by names of attributes of objects of that type. Thus, you could use this command for describing int
or float
, in which case you could use data type
as the category. (A data type is a category of certain objects for purposes of deciding which operations can be performed on them.)
In Lisp, for example, pair names a particular data type, and an object of that type has two slots called the car and the cdr. Here is how you would write the first line of a definition of pair
.
@deftp {Data type} pair car cdr ... @end deftp
The template is:
@deftp category name-of-type attributes... body-of-definition @end deftp
@deftp
creates an entry in the index of data types.
When you write a definition using @deffn
, @defun
, or one of the other definition commands, please take care to use arguments that indicate the meaning, as with the count argument to the forward-word
function. Also, if the name of an argument contains the name of a type, such as integer, take care that the argument actually is of that type.
A function definition uses the @defun
and @end defun
commands. The name of the function follows immediately after the @defun
command and it is followed, on the same line, by the parameter list.
Here is a definition from elisp:Calling Functions.
apply function &rest argumentsapply
calls function with arguments, just likefuncall
but with one difference: the last of arguments is a list of arguments to give to function, rather than a single argument. We also say that this list is appended to the other arguments.
apply
returns the result of calling function. As withfuncall
, function must either be a Lisp function or a primitive function; special forms and macros do not make sense inapply
.(setq f 'list) ® list (apply f 'x 'y 'z) errorÞ Wrong type argument: listp, z (apply '+ 1 2 '(3 4)) ® 10 (apply '+ '(1 2 3 4)) ® 10 (apply 'append '((a b c) nil (x y z) nil)) ® (a b c x y z)An interesting example of usingapply
is found in the description ofmapcar
.
In the Texinfo source file, this example looks like this:
@defun apply function &rest arguments @code{apply} calls @var{function} with @var{arguments}, just like @code{funcall} but with one difference: the last of @var{arguments} is a list of arguments to give to @var{function}, rather than a single argument. We also say that this list is @dfn{appended} to the other arguments. @code{apply} returns the result of calling @var{function}. As with @code{funcall}, @var{function} must either be a Lisp function or a primitive function; special forms and macros do not make sense in @code{apply}. @example (setq f 'list) @result{} list (apply f 'x 'y 'z) @error{} Wrong type argument: listp, z (apply '+ 1 2 '(3 4)) @result{} 10 (apply '+ '(1 2 3 4)) @result{} 10 (apply 'append '((a b c) nil (x y z) nil)) @result{} (a b c x y z) @end example An interesting example of using @code{apply} is found in the description of @code{mapcar}.@refill @end defunIn this manual, this function is listed in the Command and Variable Index under
apply
.
Ordinary variables and user options are described using a format like that for functions except that variables do not take arguments.